STMicro’s Machine Learning-Enabled Motion Sensor Improves Accuracy, Cuts Energy

May 2, 2019 Brandon Lewis

GENEVA. STMicroelectronics has integrated machine learning capabilities into its LSM6DSOX iNEMO advanced inertial sensors to improve battery life and performance of mobile devices and wearables. A machine learning core in the sensor works with integrated finite-state machine logic to classify motion data based on known patterns. By offloading these functions from a host processor, motion-based apps can be accelerated and energy conserved.

The LSM6DSOX contains a 3D MEMS accelerometer and 3D MEMS gyroscope, as well as substantial internal memory and high-speed I3C digital interface. The I3C interface enables short, high volume connections with the host controller and shorter overall connection times. The result is always-on performance and a low typical current consumption of 0.55 mA that helps maximize battery life.

The LSM6DSOX can be integrated with Android and iOS platforms, and users can train the machine learning core for decision tree-based classification using the open-source Weka application. The PC-based Weka app allows developers to generate settings and limits from sample data such as acceleration, magnetic angle, and speed to characterize various types of movement.

The LSM6DSOX is available now for $2.50 in qty 1000. More information is available at

About the Author

Brandon Lewis

Brandon Lewis, Editor-in-Chief of Embedded Computing Design, is responsible for guiding the property's content strategy, editorial direction, and engineering community engagement, which includes IoT Design, Automotive Embedded Systems, the Power Page, Industrial AI & Machine Learning, and other publications. As an experienced technical journalist, editor, and reporter with an aptitude for identifying key technologies, products, and market trends in the embedded technology sector, he enjoys covering topics that range from development kits and tools to cyber security and technology business models. Brandon received a BA in English Literature from Arizona State University, where he graduated cum laude. He can be reached by email at

Follow on Twitter Follow on Linkedin Visit Website More Content by Brandon Lewis
Previous Article
People & Products Podcast: Thingstream’s Neil Hamilton on GSM for the IoT
People & Products Podcast: Thingstream’s Neil Hamilton on GSM for the IoT

GSM connectivity enables devices to use extensive GSM network that exists almost everywhere.

Next Article
WiBotic and GaN Systems Partner on High-Power Wireless Charging

WiBotic is partnering with GaN Systems to provide off-the-shelf solutions for rapidly charging the rapidly-...