High-Voltage Electric Motor and Battery Emulation

June 26, 2018 dSPACE Inc.
High-voltage load module from dSPACE.
High-voltage load module from dSPACE.
Control cabinet (left) with numerous high-voltage loads in combination with a dSPACE SCALEXIO  hardware-in-the-Loop (HIL) simulator (right).
Control cabinet (left) with numerous high-voltage loads in combination with a dSPACE SCALEXIO hardware-in-the-Loop (HIL) simulator (right).

Wixom, Michigan, June 26, 2018: dSPACE recently complemented its product portfolio for the simulation of electric drives. The hardware-in-the-loop (HIL) systems from dSPACE now allow for the highly dynamic emulation of electric motor and battery components with voltages up to 800 V, which means that all drive components of hybrid and fully electric drives can be represented with a real energy flow. These power hardware-in-the-loop (PHIL) capabilities make dSPACE a unique provider of single-source, ready-to-use simulation solutions for the complete range of electric vehicle drives.

Motor and Battery Simulation with the Same Modular Hardware

The new high-voltage load hardware features a compact design and modular setup. The compact units can be flexibly used with regard to currents, number of phases, as well as the type of voltage source to be emulated. Using the same hardware for the emulation of loads, such as electric motors, and sources, such as batteries and the AC grid, makes the systems cost-effective and easy to maintain. The energy flow in the system circulates without complex grid feedback, leading to additional efficiency and minimum load on the mains supply. An open (Simulink/Xilinx) library from dSPACE provides the required simulation models, from FPGA models for motors and incremental encoders to the dSPACE Automotive Simulation Models (ASMs) for batteries and complete powertrains.

Versatile Application Options Thanks to High Dynamics

Thanks to their high dynamics and low self-inductance, the high-voltage loads can emulate variable motor inductances. In addition, high-frequency rotating fields and all operation points of an electric motor can be emulated, both in motor and generator operation. By frontloading the conventional dynamometer testing to emulators, the high-voltage electronic loads integrate seamlessly into hardware-in-the-loop (HIL) validation. Because the currents can be emulated precisely, it is possible to display ripple currents as well as harmonic frequencies, which allows for testing the latest control concepts. Furthermore, it is possible to emulate many important aspects for fault simulation, such as leakage currents, zero currents, or current-limited short circuits. The integrated monitoring and limiting of voltages, currents, and temperatures protects the connected electronic control units (ECUs) at all times.

Long-Standing Experience with Emulating Electric Drives

With its many years of experience in emulating low-voltage electric drive components, dSPACE was able to transfer its extensive know-how including all its benefits to high-voltage applications. For many of the key technologies, dSPACE has filed patent applications and it has optimized these technologies for drive applications. Moreover, the new high-voltage loads are also suitable for other application areas, such as testing industrial inverters, DC/DC converters, wind and solar energy inverters, or emulating alternating current grids.

About dSPACE:

dSPACE develops and distributes integrated hardware and software tools for developing and testing electronic control units and mechatronic controls. The application areas for dSPACE systems are primarily in the automotive industry, but also in drives technology, aerospace, and other industrial sectors. The company's customer base includes virtually all major vehicle manufacturers and suppliers. With more than 1,400 employees worldwide, dSPACE is located in Paderborn, Germany; has three project centers in Germany; and serves customers through local dSPACE companies in the USA, the UK, France, Japan, and China.

Previous Article
Reflex Photonics to help develop next generation rugged transceiver based on silicon photonics (SiP) research.

Reflex Photonics is proud to announce that we will collaborate with Prof. Michaël Ménard of Université du Q...

Next Article
ACEINNA Launches new MTLT305D high performance Dynamic Tilt Sensor Module - Construction, Off Road, Robotics
ACEINNA Launches new MTLT305D high performance Dynamic Tilt Sensor Module - Construction, Off Road, Robotics

ACEINNA's new MEMS based, MTLT305D Dynamic Tilt Sensor Module combines accelerometers, gyroscopes and a tem...