Beyond Sensors and Cameras - Moving the IoT off the Cloud and into the Physical World

January 4, 2019 Corné Bekkers, Trinamic Motor Control

In its early days, the Internet of Things (IoT) largely served as the "eyes and ears" of cloud-based services, collecting data from sensors, cameras and other input devices inhabiting the physical world, with less emphasis on manipulating or controlling the things it monitored. IoT-enabled automation and robotic applications have begun to merge, but their cost has generally limited their use to high-end industrial and commercial markets. Recently however, embedded motion control devices have begun to enable development of smart, secure, low-cost motorized products that complement the IoT's eyes and ears with equally capable arms and hands.

What is Embedded Motion Control?

The term "embedded motion control" refers to highly-integrated devices that embody precision motor control, high-performance computing, and, in many cases, communication capabilities, within a single device. It is the next stage of evolution for embedded computing, which began in the late 1970s, when the advent of low-cost single-chip microcontrollers made it possible to embed intelligence within everything from microwave ovens and children's toys to cash registers and medical equipment. Most of the efficiency gains enjoyed by modern automobiles were made possible by embedded computing.

Almost two decades later, the rise of the internet, wireless data, and higher levels of silicon integration brought embedded connectivity to everyday items like bathroom scales, fitness monitors, and home entertainment equipment. Embedded connectivity also found applications in some motorized consumer products, such as the Roomba cleaning robot. Unfortunately, the cost of a separate MCU, motor controller and analog motor driver components, and the complexity of developing the motor control software meant that connected motion control was used primarily in manufacturing automation and other industrial applications.

Increasing levels of integration helped reduce the cost and component count of motion control platforms to the point where they only needed a general-purpose MCU and a handful of analog components to implement a complete solution (Figure 1).

Figure 1: An integrated motor control solution with external MCU. Further integration of motion control requirements in software not only allow for smaller electronics, it also offloads the MCU of real-time critical tasks.

Recently, embedded motion controllers have emerged, which integrates these functions with a powerful MCU (Figure 2). In most cases, the on-chip processor has enough compute power to support the complex algorithms needed to precisely control one or more motors. In many cases, the devices also include Ethernet, CAN bus, or other interfaces used for IoT communication. For lower-power applications, a single package can even contain the final output stages needed to drive a modest-sized stepper, brushless PMM (BLDC/BLAC), or other type of motor. The MCU can also be programmed to drive other types of motion-producing devices, such as linear actuators and voice coils.

Figure 2: Embedded Motion Control devices integrate high-performance embedded processing, capabilities, and motor drive electronics in a single package. Many embedded controllers also include communications functions that can be used to implement distributed control systems and support IoT/IIoT operation. 

To accelerate development, these controllers are usually supported by libraries of firmware that provide designers with a rich set of functions that can be invoked through a standard API. The libraries typically include algorithms for several common motor control modes (Torque, Velocity and Position), for torque control i.e. Field Oriented Control (FOC), and motion modes (such as profiled position, profiled velocity, and profiled torque).

Applications

Medical Products

Medical devices are one of the first markets where embedded motion control is changing expectations about product capability and safety. Infusion pumps, for example, must deliver a steady flow of precisely metered therapeutic agents to patients. Embedded controllers with IoT capability enable these pumps to be programmed and monitored either at the patient's bedside or by a centralized management application. Similarly, the IoT-enabled controllers used in wearable insulin pumps and other personal drug delivery devices can support autonomous operation while providing a patient's health metrics in real-time to a cloud-based analytics application.

Figure 3: Embedded motion control is bringing new levels of accuracy, convenience, and safety to personal medical devices.

Industrial Products

Industrial automation has been an early beneficiary of embedded motion control. The low-cost, compact motor controllers can be located close to, or even built into a motor or actuator. Each module's embedded controller performs most of the basic motion control functions locally, creating a distributed control architecture that puts intelligence close to the point where data is translated into motion. This, and the controller's ability to monitor and record its motor(s) vital signs, enables embedded motion control systems to be more responsive, as well as deliver more speed and accuracy at a lower price point.

Embedded motion controllers can also monitor and log the health of the motor and the machinery it drives in real time, enabling them to react faster to fault or alarm conditions and, in some cases, anticipate problems before they cause product defects or costly downtime. At its simplest, this involves keeping track of how many moves each subassembly has made and comparing it against a schedule for adjustments, part replacements, and other routine maintenance. This can be combined with information collected from the motors to look for early indicators of excess friction somewhere in the mechanism that could quickly lead to more serious, and expensive, problems.  

In these applications, the controllers' embedded communication capabilities enable a machine to be just as easily monitored and controlled across a LAN by a local application server or across the IIoT by a cloud-based application.

Consumer Products

The high levels of silicon integration, and the resulting lower cost of embedded motion control components is helping the technology find a growing number of new applications within consumer markets.

Some examples include:

  • Smart, high-performance e-Bikes and e-Scooters that are more affordable and can squeeze more range out of their batteries using controllers that carefully match their output drive wave to the motor and the load it's under.
  • IoT connected smart homes that feature efficient remotely controlled active vents, window shades, surveillance cameras and appliances.
  • 3D printers equipped with smart motor drivers that use complex wave shaping algorithms to deliver more speed and pint accuracy, while dramatically reducing the noise they produce.
  • Personal robotics with time-critical functions embedded in hardware peripherals, leaving the processor free for AI and user interface.

Conclusions

Embedded motion control is making it easier and more cost-effective than ever to turn data into motion. In doing so, it is helping make existing products better and make new classes of products possible. 

After obtaining his master’s degree in Journalism in the Netherlands, Corné worked for a London-based content agency where he managed content for tech companies ranging from finance to automotive sectors. From there, he moved to TRINAMIC Motion Control, a leader in embedded motion and motor control. There, he combines journalism with his passion for technology as Content Marketing Manager, working closely with the Trinamic engineering team. In his spare time, Corné loves riding his classic BMW motorcycle around Hamburg and discovering new places. 

Previous Article
Neosen Energy and Senet Work Together to Expand LoRa Networks for Schools, Medical and Businesses

Neosen Energy and Senet, Inc. will partner up to launch campus safety products connected over Senet’s LoRaW...

Next Article
GL Studio Adopted by Boston UX for Technology Collaboration at CES 2019

Combination of DiSTI's technology and Boston UX's design expertise provides new solution for customers deve...